
Controlled Quadrature 

By Irwin Roman 

1. Introduction. If y = f(x) is a function for which the integral F(x) = ff(x) dx 

can be found anid evaluated numerically, and if F(x) is continuous on the interval 

a ? x ? b, then the definite integral of f(x) from x = a to x = b is = f(x) d x 

= F(b) - F(a). Under proper restrictions the property of continuity can be 
removed, but this extension is not considered in this paper. 

If F(x) cannot be found, or if the numerical evaluation is inconvenient, mechani- 
cal (numerical) quadrature usually can be used with one or more of the numerous 
formulas available in the literature. The quadrature value is augmented by a 
remainder term, usually given as the value of a function at an undetermined point 
of the interval of integration. Frequently quadrature formulas are applied on the 
assumption that the remainder term is negligible. This may or may not be verified 
by establishing an upper bound for the remainder term. If verified, it seldom is 
used to control the lengths of the subintervals for the integration. Even when 
subintervals are used, the bounds are determined for the entire interval of integra- 
tion, not the subintervals. 

The choice of a quadrature formula must be made by the user. Each has ad- 
vantages in some applications. The present discussion uses the Simpson quadrature 
formula to illustrate the method, which can be applied to other formulas without 
important changes in the fundamental method, provided the remainder term is 
obtainable. Simpson's formula has been selected to illustrate the method for several 
reasons: 

1. It involves the values of the integrand at only three points. 
2. The only derivative needed is of the fourth order. 
3. It allows considerable flexibility in the choice of subintervals, which fact is 

important if tables of the integrand are limited. 

2. Present Method. The method suggested here utilizes both a lower and an 
upper bound of the remainder term, thus reducing the extent of the uncertainty and 
determining a mean value for it. The remainder term is determined for each sub- 
interval, not necessarily of a fixed length throughout the entire interval of integra- 
tion. Before perforning the quadrature, the range of the remainder term on each 
subinterval is determined, by trial and approximation if necessary. The first sub- 
interval has its initial end at x = a, and the last subinterval has its terminal end at 
x = b. Each subinterval has its initial end at the terminal end of another interval, 
so that the coverage of the original interval by the subintervals is complete without 
overlapping. 

Even in those cases for which actual extrema can be found, it often is simpler to 
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use bounds for the remainder term on an interval. Frequently this will eliminate 
the need for a precise numerical evaluation of the extrema. The use of bounds merely 
augments an uncertainty inherent in the remainder term. The term bound is used 
here in its usual mathematical sense. An upper bound exceeds the value of the 
function at every point of its interval, and the value of the function exceeds the 
lower bound at every point. A maximum is a least upper bound of the function 
and a minimum is a greatest lower bound. 

If bounds are selected for the remainder term over a selected interval, the error 
can be used to determine the lengths of the subintervals, if the possible quadrature 
error exceeds the accepted tolerance. The total quadrature value and error are the 
sums of the corresponding values for the subintervals. 

If desired, each interval can be determined by successive trial to give an optimum 
length for which the error does not exceed, but is close to, the accepted tolerance 
for each interval. However, the extra calculations usually are not justified. Sub- 
dividing an interval decreases the total error, as the bounds cannot be increased by 
subdividing, and at least one of the subintervals can be expected to lead to bounds 
less separated than in the original interval. 

As a routine procedure, the error is evaluated for the entire interval to obtain a 
basis for subdividing. Although more subintervals may be used, it usually is adequate 
to divide an interval into two parts after the first subdivision has been made. In 
examining the errors for the initial subdivision, the number of significant figures 
may be reduced below that desired in the quadrature value, as the error can be 
expected to be much smaller than the quadrature value. After the original interval 
has been subdivided to assure an acceptably small error, the quadrature formula 
is applied. In selecting the subinter-vals, the available tables of the integrand or of 
functions needed in calculating the values of the integrand must be considered, as 
the values of the integrand or of functions needed in obtaining its values must be 
available at the ends and center of each subinterval. Otherwise, interpolation or 
involved computations may be needed. It is preferable to select shorter intervals 
if that will permit the use of existing tables. 

If the range of the remainder term for an interval is acceptably small, its mid- 
point may be taken as the value of the correction, and the error cannot exceed half 
of the range of the remainder term. If the range of the remuainder term is too great, 
the interval is subdivided, and the analysis is repeated until the error for each 
subinterval is acceptably small and the sum of the individual errors is also acceptably 
small. The method is progressive. At each step those intervals that have errors above 
the tolerance are subdivided. After each interval error is below the tolerance, 
further subdivision is needed if the sum of the individual errors exceed the tolerance, 
in which case the interval that has the largest error term is subdivided. The sub- 
dividing continues until the total error is acceptably small. 

After the subdivision has been selected by approximate calculation to assure 
that the total error cannot exceed the tolerance, the quadrature formula is applied. 
For each subinterval, the correction term, error term, and quadrature value are 
calculated. The total quadrature value is the sum of the individual quadrature 
values, and the adjusted value is obtained by adding to the total quadrature value 
the sum of the corrections, signs considered. The total error cannot exceed the sum 
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of the individual errors. It should be remembered that the correction as used here is 
the arithmetic mean of the signed values of the lower and upper bounds of the 
remainder term and that the actual error cannot exceed the error as used here. 

The method of subdivision and the choice of subintervals are not unique, but 
the value determined for the integral has an acceptably small error. 

As many of the functions involved in the calculation of quadrature errors are 
in the form of, or contain terms in the form of, products, the bounds of a product 
are important. The extrema of uv occur for values of the argument for which 
uv + u'v = 0, which frequently is difficult to solve. However, the bounds of a 
product must lie on the range determined by the products of the bounds of the 
factors. If the subscript 1 denotes a lower bound and the subscript 2 denotes an 
upper bound, it follows that 

(uv)i ? {ulvl , U1V2 , U2V1 , U2v2} ? (UV)2 , 

where the curly braces indicate that the inequality applies to each element enclosed 
by them. Specifically, (uv), may be selected as the algebraically smallest of the 
four products and (uv)2 as the algebraically largest of the four products. Usually 
this choice can be made by inspection, but occasionally two or more of the products 
may be so nearly equal that the products must be calculated to determine the 
acceptable value. 

If a function is monotonic on an interval, the bounds may be selected as the 
values of the function at the ends of the interval. However, if f(x) has a minimum 
at x = m and/or a maximum at x = n, where a < {m, n} < b, then f(n) ? f(x) 
< f(n) when a < x < b and the lower and upper bounds may be selected as f' ? 

f(m) and f2 > f(n), respectively. 
This method does not require that all subintervals shall have the same length, 

nor that they have lengths that follow some preassigned pattern, such as increasing. 

In most of the usual quadrature formulas, I = f (x) dx = Io + R, where 

o= Z=o akf(xk) and R depends on a, b, and some function determined from 
f(x). The values of ak , Xk, and n depend on the specific quadrature formula used. For 
Simpson's quadrature [1, Sec. 172], [2, Sec. 57.1] andothers, Io = (6/3) (yo + 4y, + Y2), 

where 6 = (b - a)/2 and yj = f(a + j5). The remainder term is R = -65fiv( i 
/901 

where a < t < b. If g(x) = f%v(x), the lower and upper bounds of fiv(x) are gi 
and g2, respectively, and R = -65'g()/90. The bounds of R are selected 
algebraically from -659g/90 and -6592/90. 

If gi is a lower bound and g2 an upper bound of g(x) on the interval a < x < b, 
where b = a + 25, and if C = -65(gl + g2)/180 and E = 65(g2 -gl)/180, then 

c = Io + C will be within E of I. 
If f(x) is a polynomial of degree not above three, g(x) = 0, so that C = E = 0 

and I = Io = I, exactly. If f(x) is a polynomial of degree four, g(x) = k is constant 
so that C = -65k/90 and E = 0. Accordingly, I = I = Io - 65k/90, exactly. 
For other functions, the results are approximate. 

3. Examples. To illustrate the application of the method, four examples are 
given, each introducing a feature not included in those that precede it and each 
omitting details that have been discussed in the previous examples. 
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TABLE 1 

r3 

Simpson quadrature of I e-x dx = 0.950 212 932 for T = 5 X 10-7 

1-e-3 = 0.950 212 9316 G = 0.005 278 060 731 
n 10 12 15 

6 0.15 0.125 0.1 
26 0.30 0.250 0.2 

65 X 10O 7.593 750 000 3.051 757 812 1.000 000 000 
e-6 0.860 707 9764 0.882 496 9026 0.904 837 4180 

B = e-26 0.740 818 2207 0.778 800 7831 0.818 730 7531 
1 -B 0.259 181 7793 0.221 199 2169 0.181 269 2469 

(1 + B)/(1- B) 6.716 591 828 8.041 623 330 10.033 311 13 
E = 65 0.000 000 401 0.000 000 161 0.000 000 053 

C = (1 + B)E/(1 - B) 0.000 002 693 0.000 001 295 0.000 000 532 
b(1 + 4e-6 + e-26)/3 0.259 182 506 0.221 199 516 0.181 269 348 

At 3.666 202 671 4.295 733 705 5.241 997 459 

Io 0.950 215 596 0.950 214 216 0.950 213 462 
1, = Io- + C 0.950 212 903 0.950 212 921 0.950 212 930 

I - I. 0.000 000 029 0.000 000 011 0.000 000 002 

Example 1. An example, in which the results can be checked is: 

r3 

I = e-x dx = 1 -0.049 787 068 = 0.950 212 932. 

In this example, f(x) = e-x so that g(x) = e x. For the interval (a, b), gi = eb-b 

andg2 = e-a, so that g2 - = e-a(1 e-2a) and g2 + gl = e-a(I + e-2). Ac- 
cordingly, E = LA and C = -MA, where A = ea, B =e,L=65(1-B)/180, 
and M = 65(i + B)/180. The quantities B, L, and M depend only on 6, whereasA 
depends only on a. For a selected value of 6, E and C decrease as a increases. If the 
total interval (0, 3) is divided into n subintervals of the same length, then 6 = 
3/(2n) = 1.5/n. For the kth subinterval, a = 2(k - 1)6 and Ak = e-2(k-1)8 where 
1 < k ? n. For the kth subinterval, the error term is Ek = LAk and the correction 
term is Ck -MAk . Accordingly, the error term is E = LZk= Ak and the cor- 
rection term is C = -MEk=n Ak, for the entire interval of integration. But 

n 1-e-3 0.950 212 9316 
At = 1 1-e=2A 1-B 

Accordingly, the total error is E = LAt = 0.005 278 960 73165, and the total 
correction is C = - MA t = - (1 + B ) E/ ( - B). The Simpson quadrature value 
for the kth interval is Ik = (6/3)[ea' + 4e (a+6) + e(a+26)] = (6/3)Ak(1 + 

4e-' + e-28), so that the total quadrature value is: 

Io = (6/3)(1 + 4e-6 + e-28)At. 

If the total error is to be less than 5 X 10-7 = LAt = 5.278 960 73165 X 10-3, 

then 65 ? 9.471 561 268 X 10 5 and 6 < 0.156. For 6 < 0.156 n ? 10. To avoid 
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TABLE 2 
3 

Simpson quadrature intervals for I = e-X dx and T = 5 X 10-7 

Interval a 6 b A e 
= 

10L Replaced 

1 0.0 0.25 0.5 1.000 000 2135 X XX 
2 0.5 0.25 1.0 0.606 531 1295 X X X 
3 1.0 0.25 1.5 0.367 879 785 X X X 
4 1.5 0.25 2.0 0.223 130 476 X X X 
5 2.0 0.25 2.5 0.135 335 289 X X X 
6 2.5 0.25 3.0 0.082 085 175 

1.1 0.0 0.10 0.2 1.000 000 10 
1.2 0.2 0.15 0.5 0.818 731 90 
2.1 0.5 0.10 0.7 0.606 531 6 
2.2 0.7 0.15 1.0 0.496 585 54 
3.1 1.0 0.10 1.2 0.367 879 4 
3.2 1.2 0.15 1.5 0.301 194 33 
4.1 1.5 0.10 1.7 0.223 130 2 
4.2 1.7 0.15 2.0 0.182 684 20 
5.1 2.0 0.10 2.2 0.135 335 1 
5.2 2.2 0.15 2.5 0.110 803 12 

interpolationi beyond the third decimal place in the argument, n should be a factor 
of 1500. For n = 10, 8 = 0.15; for n = 12, 8 = 0.125; and for n = 15, 8 = 0.1. 
Smaller values of 8 can be used, but these are sufficient for present purposes. The 
numerical values for T = 5 X 10-7 are shown in Table 1 for these three values of n. 
For 10 subintervals, the quadrature value is 0.950 215 596 and the adjusted value is 
0.950 212 903. The maximum error is 401 X 10-9, and the discrepancy from the 
direct value is 29 X 10 9. The discrepancy in the Simpson quadrature value, 
neglecting forcing errors of rounding, is 2664 X 10-9. For 15 subintervals, the 
quadrature value is 0.950 213 462, too large by 530 X 10 9. The adjusted value is 
too small by 2 in the ninth decimal, whereas the possible error is 53. Each of the 
present method values has an error not exceeding the tolerance selected as 5 X 10-7. 

Forcing errors of rounding have been neglected throughout. 
If the intervals are not all taken as of the same length, more calculations are 

needed. In many applications, the gain in using intervals of the same length is less 
pronounced, especially if the limits of integration do not lend themselves to simple 
uniform subdivision. In the case of unequal intervals, the values of L and M vary 
and must be determined for each interval. As the total error can be determined only 
by adding the individual errors, a smaller tolerance must be selected for the subin- 
tervals. In each subinterval, L _ T/A, where T is the subinterval tolerance. Then 
values of L are determined for various values of 8 until a value of 8 can be selected 
to make the L sufficiently small. 

Frequently, especially when the values of the functions needed can be obtained 
simply, the method can be on a successive approximation basis. In this example, the 
interval of integration is first divided into six equal subintervals, and the maximum 
error is calculated for each, after which the errors guide further subdivision. Table 2 
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TABLE 3 
r3 

Simpson quadrature values for I = e-x dx and T = 5 X 10-7 

Tabulated values to be multiplied by 10-9 
a a (+6 b 

Yo YY Y2 10 -C E 

0.0 0.1 0.1 0.2 1000 000 000 904 837 418 818 730 753 181 269 348 101 10 
0.2 0.15 0.35 0.5 818 730 753 704 688 090 606 530 660 212 200 689 601 90 
0.5 0.1 0.6 0.7 606 530 660 548 811 636 496 585 304 109 945 417 61 6 
0.7 0.15 0.85 1.0 496 585 304 427 414 932 367 879 441128 706 224 365 54 
1.0 0.1 1.1 1.2 367 879 441332 871 084 301 194 212 66 685 266 37 4 
1.2 0.15 1.35 1.5 301 194 212 259 240 261223 130 160 78 064 271 221 33 
1.5 0.1 1.6 1.7 223 130 160 201 896 518182 683 524 40 446 659 23 2 
1.7 0.15 1.85 2.0 182 683 524 157 237 166135 335 283 47 348 374 134 20 
2.0 0.1 2.1 2.2 135 335 283 122 456 428110 803 158 24 532 138 14 1 
2.2 0.15 2.35 2.5 110 803 158 95 369 162 82 084 999 28 718 240 81 12 
2.5 0.25 2.75 3.0 82 084 999 63 927 861 49 787 068 32 298 626 715 175 

SUM 950 215 252 2353 407 

shows the first subdivision and the maximum error for each subinterval. If the total 
error tolerance is 5 X 10-7, intervals 1, 2, and 3 must be subdivided, as the error 
term of each exceeds the tolerance. Table 2 indicates that interval 1 is replaced by 
intervals 1.1 and 1.2, interval 2 is replaced by intervals 2.1 and 2.2, and interval 3 is 
replaced by intervals 3.1 and 3.2. At this stage of the calculation, intervals 1, 2, 
and 3 have been replaced and do not enter the calculations again. The sum of the 
error terms for all reimaining intervals is 1137 X 10-9, which exceeds the tolerance. 
Hence further subdivision is needed. The largest error term now occurs for interval 
4, which is therefore replaced by intervals 4.1 and 4.2. The error sum is now 683 X 
i0-9, and another subdivision is needed. This time, interval 5 has the largest error 
term and is replaced by intervals 5.1 and 5.2. The sum of the error terms is now 
403 X 10-9, which is less than the tolerance. The method is progressive, and the 
accuracy can be improved until the forcing errors of rounding are of the same order 
as the individual error terms. The values of L and 5' could have been included in 
Table 2, but it is preferable to compute them separately. For zA = 0.25, L = 
2.134 706 X 10 6 and 65 = 9.765 625 X 10-4; for a = 0.15, L = 1.093 424 X 
10-7 and 85 = 7.593 750 X i0-5; and for a = 0.1, L = 1.007 050 X 10-8 and b = 1 X 

5 
10-5. 

After the subdivision has been determined, the quadrature is performed in the 
usual manner, as shown in Table 3. For 6 = 0.25, M = 8.715 988 X 1-6; for a = 
0.15, M = 7.344 076 X 107 ; and for a = 0.1, M = 1.010 406 X 10-7. The Simpson 
quadrature value is seen to be 0.950 215 252, with a correction between 1946 and 
2760 X 10 9. The present method determines the integral value as 0.950 212 899, 
with an error not over 407 X 10 9. The discrepancies from the direct value are 2320 
and 33, respectively, in the ninth decimal place, except for rounding errors. 

Example 2. In the preceding example, the integrand was monotonic over the 
entire interval of integration, so that no internal extrema occurred on any subin- 
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TABLE 4 

Simpson quadrature intervals for I = f sin x dx and T = 5 X 10-7 

[n] = X 
10=7 For 8 = 0.2, ) 5/180 = 1.777 778 [-6] 

For 8 = 0.1, 65/180 = 5.555 556 [-I8] 

Int. xi X2 8 g- g2 g2-gl E Replaced 

1 0.0 0.4 0.2 0.000 000 0.389 418 0.389 418 6.923 [-7] XXX 
2 0.4 0.8 0.2 0.389 418 0.717 356 0.327 938 5.830 [-7] XXX 
3 0.8 1.2 0.2 0.717 3560.932 039 0.214 683 3.817 [-7] XXX 
4* 1.2 1.6 0.2 0.932 039 1.000 000 0.067 961 1.208 [-7] 
5 1.6 2.0 0.2 0.909 297 0.999 574 0.090 277 1.605 [-7] 

1.1 0.0 0.2 0.1 0.000 000 0.198 669 0.198 669 1.104 [-81 
1.2 0.2 0.4 0.1 0.198 669 0.389 418 0.190 749 1.060 [-8] 
2.1 0.4 0.6 0.1 0.389 418 0.564 642 0.175 224 9.735 [-91 
2.2 0.6 0.8 0.1 0.564 642 0.717 356 0.152 714 8.484 [-91 
3.1 0.8 1.0 0.1 0.717 356 0.841 471 0.124 115 6.895 [-9] 
3.2 1.0 1.2 0.1 0.841 471 0.932 039 0.090 568 5.032 [-9] 

SUM (omitting replaced intervals) 3.331 [-7] 

* This interval includes x = 7r/2 = 1.57. 

2 

terval. In evaluating I = sin x dx, the fourth derivative of the integrand is 

g(x) = sin x, which has a maximum of 1 at x = H/2 = 1.570 796. For x < 1.57, 
g(x) increases, so that on an interval 0 < a < x < b ? 1.57, gi ? g(a) = sin a and 
92 _ sin b. On the contrary, for 1.57 < a < x < b ? 3, gi < sin b and 92 > sin a. 
For an interval containing x = 1.57, 92 > 1 and gi is less than or equal to the smaller 
of the two quantities sin a and sin b. 

For a preliminary estimate of 8, it may be noted that gi = 0 and g2 = 1 are 
suitable selections, so that for an error tolerance of T, E = 85/180 ? T. For T = 
5 X 10-7, 5 < 1.8 X 10-5 and 8 < 0.18. For the choice 8 = 0.2, the value of 85/180 
is (16/9) X 10- and the determination of E is shown in Table 4, with subdivisions 
as indicated. Directly, I = 1.416 146 837. In Table 4, the subscript 1 indicates a 
lower bound and the subscript 2 an upper bound. Table 4 indicates that the intervals 
1 and 2 are too large, as E > T. Replacement of interval 1 by intervals 1.1 and 1.2 
and interval 2 by intervals 2.1 and 2.2 reduces the total error in the seventh decimal 
place by 12.753 - 0.399 = 12.354, so that at this point the total error cannot exceed 
the sum of the values of E for the intervals 1.1, 1.2, 2.1, 2.2, 3, 4, and 5, which is 
7.029 X 10-7, and hence exceeds T. Inspection of the table shows that the largest 
value of E is in interval 3, which is therefore replaced by intervals 3.1 and 3.2. 
The error now cannot exceed 3.33 in the seventh decimal place, and the sub- 
division is acceptable. For this subdivision, the quadrature is completed in Table 5, 
which shows that the Simpson value is 1.416 154 144 and the adjusted value is 
1.416 146 962, with an error not exceeding 333 in the ninth decimal place. The 
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TABLE 5 
2 

Simpson quadrature values for I = f sin x dx and T - 5 X 10-7 

Tabulated values to be multiplied by 10-9 
a b~ +I 

aE -c f(a) f(a +) f(b) In 

0.0 0.2 0.1 0.1 11 11 000 000 000 99 833 417 198 669 331 19 933 433 
0.2 0.4 0.1 0.3 11 33 198 669 331 295 520 207 389 418 342 59 005 617 
0.4 0.6 0.1 0.5 10 53 389 418 342 479 425 539564 642 473 95 725 432 
0.6 0.8 0.1 0.7 8 71 564 642 473 644 217 687 717 356 091 128 628 977 
0.8 1.0 0.1 0.9 7 87 717 356 091 783 326 910 841 470 985 156 404 491 
1.0 1.2 0.1 1.1 5 98 841 470 925 891 207 360932 039 086 177 944 650 
1.2 1.6 0.2 1.4 121 3435 932 039 086 985 449 730999 573 603 391 560 774 
1.6 2.0 0.2 1.8 160 3394 999 573 603 973 847 631 909 297 427 386 950 770 

SUAI 333 7182 1 416 154 144 

TABLE 6 
2 

Variations of components in f sin x2 dx 

x 0 1.253 314 1.772 454 2 
z 0 H/2 II 4 

sin z 0 +1 0 -0.756 803 
Cos Z +11 0 -1 -0.653 644 

16z2 - 12 -12 +244 
48z 0 +192 

Simpson value exceeds the direct value by 7307 in the ninth place, whereas the 
adjusted value exceeds it by 125 in that place, which is well within the tolerance. 

Example 3. In the preceding examples, g(x) = f(x), which usually is not true, 
and in each the integral could be evaluated directly, which often is not true. For 

r2 

the integralI = f sin x2 dx, f(x) = sin z and g(x) = (16Z2 - 12) sin z - 48 cos z, 
o~~~~~~ 

where z has been written for x2. The indefinite integral could not be found readily 
and is not used. Oin the range 0 < x < 2, it is evident that 0 ? z < 4, and it is also 
true that -0.756 803 ? sin z ? 1 and -1 ? cos z < 1. The function sin z is 0 
at x = 0, is -0.756 803 at x = 2, and has a maximum value of 1 at z = 1.570 796, 
for which x = 1.253 314. The function cos z has a maximum of 1 at x = 0, and a 
minimum of -1 at z = 3.141 593, for which x = 1.772 454. The factors 16Z2 - 12 
and 48z increase monotonically from x = 0 to x = 2. The extrema must be kept in 
mind for all intervals containing one or more of the values 0, 1.253 314, 1.772 454, 
and 2 for x. Table 6 summarizes the variation of the various quantities, with each 
varying monotonically between the values shown. For the entire interval of in- 
tegration, -184.660 ? (16Z2 - 12) sin z ? +244, -192 < 48z cos z < 192, 



262 IRWIN ROMAN 

TABLE 7 

Quadrature intervals for I = f sin x2 dx 

For 6 = 0.2, 65/180 = 1.77778 X 10-6 E - 
80) (g2 ) 

6 = 0.1, 6/180 = 5.555556 X 10-' = 92 - g1 
Notes: (1) This interval contains z = 1.5708. 

(2) This interval contains z = 3.1416. 

Interval 1 2 3 4 5 

x 0 0.4 0.8 1.2 1.6 
0.4 0.8 1.2 1.6 2.0 

z 0 0.16 0.64 1.44 2.56 
0.16 0.64 1.44 2.56 4.00 

Note (1) (2) 

sin z 0 0.15932 0.59720 0.99146 -0.75680 
0.15932 0.59720 0.99146 1.00000 0.54936 

Cos z 0.98723 0.80210 0.13042 -0.83559 -1.00000 
1.00000 0.98723 0.80210 0.13042 -0.65364 

16Z2 12 -12.000 -11.590 -5.4464 21.178 92.858 
-11.590 -5.4464 21.178 92.858 244 

(16Z2 - 12) sin z -1.9118 -6.9215 -5.3999 20.997 -184.66 
0 -0.86772 20.997 92.858 134.04 

-48 z cos z -7.6800 -30.328 -55.441 -16.026 80.319 
0 -6.1601 -4.0065 102.68 192.00 

9 -9.5918 -37.250 -60.841 4.9710 -104.34 
0 -7.0278 16.990 195.54 326.04 

g2 - gl 9.5918 30.222 77.831 190.57 430.38 

0.2 0.2 0.2 0.2 0.2 

E X 108 1705 5373 13837 33879 76512 

g1 ? - 376.660, and 92 > +436. Hence g2 - 91 > 812 660 and 5 = 1, so that E = 
4.515 and lo = +0.8697. Accordingly, the possible error is over five times the 
Simpson value, and subdivision is needed. For five equal intervals, the error terms 
are shown in Table 7, in which the intervals follow from left to right. The total 
error does not exceed 0.0013 1306. If intervals 4 and 5 are subdivided into two equal 
subintervals each, omitted calculations show that the total error will not exceed 
0.0002 3980. Then replacing interval 3 by two equal subintervals reduces the possible 
error to 0.0001 0580. The process continues until the sum of the error terms is 
acceptably small or the forcing errors of rounding are significant, after which the 
quadrature values and the correction terms are computed as for the previous ex- 
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amples. Table 7 shows only the first five subintervals, as the calculations follow 
without introduction of new considerations. It should be noted that in Table 7, 
the minima of the functions in a selected column do not always come from the same 
value of x, but each is selected by inspection from the possible values. Also, in- 
tervals 4 and 5 have internal extrema that override the values at the ends of the 
interval. This also occurs for some of the replacing subintervals. 

Example 4. In the preceding examples, the integrand has a single factor. If 
f = uv, where u and v are functions of x, the value of fiv(x) is g(x) = uvtv + 4 u'v"' + 
6u"v" + 4u"'v' + u&v, and bounds of each term can be selected from the product 
of the bounds of its factors. No numerical example is included as no new proce- 
dures are involved. 

4. Summary. The method of quadrature discussed in this paper has several 
important aspects: 

a. The error terms are used to select subintervals to assure a negligible overall 
error. 

b. Bounds are used instead of extrema when the latter are not readily available. 
c. The lower and upper bounds of the error terms are used, thus determining a 

mean value of the error and an adjusted quadrature value. 
d. The bounds of a product are selected from the products of the bounds of 

its factors. 
e. After the subintervals have been selected, the quadrature formula is applied 

and the value adjusted by addition of the total of the corrections for the separate 
subintervals. 

f. The method is not restricted to the use of Simpson's formula which was 
selected to illustrate the method. However, details will vary with the formula. 
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